pdp11v/usr/src/lib/libm/erf.c
/* @(#)erf.c 1.7 */
/*LINTLIBRARY*/
/*
* erf(x) returns the error function of x
* erfc(x) returns 1.0 - erf(x)
*
* erf(x) is defined by
* ${2 over sqrt pi} int from 0 to x e sup {- t sup 2} dt$
*
* the entry for erfc is provided because of the
* extreme loss of relative accuracy if erf(x) is
* called for large x and the result subtracted
* from 1.0 (e.g. for x = 5, 12 places are lost).
*
* There are no error returns.
*
* Calls exp, which may underflow for some values of x.
*
* Coefficients for large x are #5667 from Hart & Cheney (18.72D).
*/
#include <math.h>
/* approx sqrt(log(MAXDOUBLE)) */
#if u3b
#define MAXVAL 27.4
#else
#define MAXVAL 9.7
#endif
#define DPOLYD(y, p, q) for (n = d = 0.0, i = sizeof(p)/sizeof(p[0]); --i >= 0; ) \
{ n = n * y + p[i]; d = d * y + q[i]; }
static double two_over_root_pi = 1.1283791670955125738961589031;
static double p1[] = {
0.804373630960840172832162e5,
0.740407142710151470082064e4,
0.301782788536507577809226e4,
0.380140318123903008244444e2,
0.143383842191748205576712e2,
-.288805137207594084924010e0,
0.007547728033418631287834e0,
};
static double q1[] = {
0.804373630960840172826266e5,
0.342165257924628539769006e5,
0.637960017324428279487120e4,
0.658070155459240506326937e3,
0.380190713951939403753468e2,
1.0,
0.0,
};
static double p2[] = {
0.18263348842295112592168999e4,
0.28980293292167655611275846e4,
0.2320439590251635247384768711e4,
0.1143262070703886173606073338e4,
0.3685196154710010637133875746e3,
0.7708161730368428609781633646e2,
0.9675807882987265400604202961e1,
0.5641877825507397413087057563e0,
0.0,
};
static double q2[] = {
0.18263348842295112595576438e4,
0.495882756472114071495438422e4,
0.60895424232724435504633068e4,
0.4429612803883682726711528526e4,
0.2094384367789539593790281779e4,
0.6617361207107653469211984771e3,
0.1371255960500622202878443578e3,
0.1714980943627607849376131193e2,
1.0,
};
double
erf(x)
register double x;
{
double d, n, xsq, sign = 1.0;
register int i;
if (x < 0.0) {
x = -x;
sign = -1.0;
}
if (x > 0.5)
return (sign * (1.0 - erfc(x)));
xsq = x * x;
DPOLYD(xsq, p1, q1);
return (sign * two_over_root_pi * x * n/d);
}
double
erfc(x)
register double x;
{
double n, d;
register int i;
if (x < 0.0)
return (2.0 - erfc(-x));
if (x < 0.5)
return (1.0 - erf(x));
if (x >= MAXVAL) /* exp(-x * x) sure to underflow */
return (0.0);
DPOLYD(x, p2, q2);
return (exp(-x * x) * n/d);
}