
The Portable C Library (onUNIX) * M. E. Lesk 1. INTRODUCTION The C language [1] now exists on three operat-
ing systems.* This document is an abbreviated form of ‘‘The Portable C Library’’, by M. E. Lesk, describing only
the UNIX section of the library. A set of library routines common toPDP11 UNIX , Honeywell 6000GCOS, and IBM

370 OS has been provided to improve program portability. This memorandum describes the UNIX implementation
of the portable routines.The programs defined here were chosen to follow the standard routines available onUNIX ,
with alterations to improve transferability to other computer systems. It is expected that future C implementations
will try to support the basic library outlined in this document.It provides character stream input and output on mul-
tiple files; simple accessing of files by name; and some elementary formatting and translating routines. The remain-
der of this memorandum lists the portable and non-portable library routines and explains some of the programming
aids available. TheI/O routines in the C library fall into several classes. Files are addressed through intermediate
numbers called file-descriptors which are described in section 2.Several default file-descriptors are provided by the
system; other aspects of the system environment are explained in section 3.Basic character-stream input and output
involves the reading or writing of files considered as streams of characters. The C library includes facilities for this,
discussed in section 4.Higher-level character stream operations permit translation of internal binary representations
of numbers to and from character representations, and formatting or unpacking of character data.These operations
are performed with the subprograms in section 5. Binary input and output routines permit data transmission without
the cost of translation to or from readableASCII character representations. Such data transmission should only be di-
rected to files or tapes, and not to printers or terminals. As is usual with such routines, the only simple guarantee
that can be made to the programmer seeking portability is that data written by a particular sequence of binary writes,
if read by the exactly matching sequence of binary reads, will restore the previous contents of memory. Other reads
or writes have system-dependent effects. Seesection 6 for a discussion of binary input and output. Section 7 de-
scribes some further routines in the portable library. These include a storage allocator and some other control and
conversion functions. 2. FILE DESCRIPTORS Except for the standard input and output files, all files must be ex-
plicitly opened before any I/O is performed on them. When files are opened for writing, they are created if not al-
ready present.They must be closed when finished, although the normal cexit routine will take care of that.When
opened a disc file or device is associated with a file descriptor, an integer between 0 and 9. This file descriptor is
used for further I/O to the file. Initially you are given three file descriptors by the system: 0, 1, and 2. File 0 is the
standard input; it is normally the teletype in time-sharing or input data cards in batch.File 1 is the standard output;
it is normally the teletype in time-sharing or the line printer in batch. File 2 is the error file; it is an output file, nor-
mally the same as file 1, except that when file 1 is diverted via a command line ’>’ operator, file 2 remains attached
to the original destination, usually the terminal. It is used for error message output.These popularUNIX conven-
tions are considered part of the C library specification. By closing 0 or 1, the default input or output may be re-di-
rected; this can also be done on the command line by>file for output or<file for input. Associated with the portable
library are two external integers, named cin and cout.These are respectively the numbers of the standard input unit
and standard output unit. Initially 0 and 1 are used, but you may redefine them at any time. Thesecells are used by
the routines getchar, putchar, gets, and puts to select their I-O unit number. 3. THE C ENVIRONMENT The C lan-
guage is almost exactly the same on all machines, except for essential machine differences such as word length and
number of characters per word. OnUNIX ASCII character code is used. Characters range from−128 to +127 in nu-
meric value, there is sign extension when characters are assigned to integers, and right shifts are arithmetic.The
‘‘ first’’ character in a word is stored in the right half word. Moreserious problems of compatibility are caused by
the loaders on the different operating systems.UNIX permits external names to be in upper and lower case, up to
seven characters long.There may be multiple external definitions (uninitialized) of the same name. The C alphabet
for identifier names includes the upper and lower case letters, the digits, and the underline. It is not possible for C
programs to communicate withFORTRAN programs. 4.BASIC CHARACTER STREAM ROUTINES These rou-
tines transfer streams of characters in and out of C programs.Interpretation of the characters is left to the user. Fa-
cilities for interpreting numerical strings are presented in section 5; and routines to transfer binary data to and from
files or devices are discussed in section 6.In the following routine descriptions, the optional argumentfd represents
a file-descriptor; if not present, it is taken to be 0 for input and 1 for output. When your program starts, remember
that these are associated with the ‘‘standard’’ i nput and output files.

COPEN (filename, type)

Copeninitiates activity on a file; if necessary it will create the file too. Up to 10 files may be open at one time.
When called as described here,copenreturns a filedescriptor for a character stream file.Values less than zero re-
turned by copen indicate an error trying to open the file. Other calls tocopenare described in sections 6 and 7.

Arguments :

Filename:a string representing a file name, according to the local operating system conventions. All accept a string
of letters and digits as a legal fi le name, although leading digits are not recommended onGCOS.
Type: a character ‘r’, ‘w’, or ‘a’ meaning read, write, or append. Note that the type is a single character, whereas the
file name must be a string.

CGETC (fd)

Cgetcreturns the next character from the input unit associated withfd. On end of filecgetcreturns ‘\0’. To signal
end of file from the teletype, type the special symbol appropriate toUNIX : EOT (control-D)

CPUTC (ch , fd)

Cputcwrites a character onto the given output unit. Cputcreturns as its value the character written. Output for disk
files is buffered in 512 character units, irrespective of newlines; teletype output goes character by character

CCLOSE (fd)

Activity on file fd is terminated and any output buffers are emptied.You usually don’t hav eto callcclose; cexit will
do it for you on all open files.However, to write some data on a file and then read it back in, the correct sequence is:
fd = copen (‘‘file’’, ‘w’); write on fd ... cclose (fd); fd = copen(‘‘file’’, ‘r’); read from fd ...

CFLUSH (fn)

To get buffer flushing, but retain the ability to write more on the file, you may call this routine.Normally, output in-
tended for the teletype is not buffered and this call is not needed.

CEXIT ([errcode])

Cexit closes all files and then terminates execution. If a non-zero argument is given, this is assumed to be an error
indication or other returned value to be signalled to the operating system.Cexit must be called explicitly; a return
from the main program is not adequate.

CEOF (fd)

Ceofreturns nonzero when end of file has been reached on input unitfd.

GETCHAR ()

Getcharis a special case ofcgetc;it reads one character from the standard input unit.Getchar () is defined ascgetc
(cin); it should not have an argument.

PUTCHAR (ch)

Putchar (ch)is the same ascputc (ch, cout);it writes one character on the standard output.

GETS (s)

Getsreads everything up to the next newline into the string pointed to bys. If the last character read from this input
unit was newline, thengets reads the next line, which onGCOSandIBM corresponds exactly to a logical record.The
terminating newline is replaced by ‘\0’. The value ofgets is s,or 0 if end of file.

PUTS (s)

Copies the strings onto the standard output unit. The terminating ‘\0’ is replaced by a newline character. The value
of puts is s.

UNGETC (ch , fd)

Ungetcpushes back its character argument to the unitfd, which must be open for input.After ungetc (‘a’, fd);
ungetc (‘b’, fd); the next two characters to be read fromfd will be ‘b’ and then ‘a’. Up to 100 characters may be
pushed back on each file.This subroutine permits a program to read past the end of its input, and then restore it for
the next routine to read.It is impossible to change an external file withungetc;its purpose is only for internal com-
munications, most particularlyscanf,which is described in section 5. Note thatscanfactually requires only one
character of ‘‘unget’’ capability; thus it is possible that future implementors may change the specification of the
ungetcroutine. 5.HIGH-LEVEL CHARACTER STREAM ROUTINES These two routines,printf for output and
scanffor input, permit simple translation to and from character representations of numerical quantities.They also
allow generation or interpretation of formatted lines.

PRINTF ([fd,] control-string, arg1, arg2, ...)

PRINTF ([−1, output-string,] control-string, arg1, arg2, ...)

Printf converts, formats, and prints its arguments under control of the control string. The control string contains two
types of objects: plain characters, which are simply copied to the output stream, and conversion specifications, each
of which causes conversion and printing of the next successive argument toprintf.

Each conversion specification is introduced by the character ‘%’.Following the ‘%’, there may be:
— an optional minus sign ‘−’ which specifies left adjustment of the converted argument in the indicated
field;

— an optional digit string specifying a minimum field width; if the converted argument has fewer char-
acters than the field width it will be padded on the left (or right, if the left adjustment indicator has been
given) to make up the field width; the padding character is blank normally and zero if the field width

was specified with a leading zero (note that this does not imply an octal field width);

— an optional period ‘.’ which serves to separate the field width from the next digit string;

— an optional digit string (the precision) which specifies the maximum number of characters to be
printed from a string, or the number of digits to be printed to the right of the decimal point of a floating
or double number.

— an optional length modifier′l′ which indicates that the corresponding data item is a long rather than
an int.

— a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are:

d The argument is converted to decimal notation.

o The argument is converted to octal notation.

x The argument is converted to hexadecimal notation.

u The argument is converted to unsigned decimal notation. This is only implemented (or useful) on
UNIX .

c The argument is taken to be a single character.

s The argument is taken to be a string and characters from the string are printed until a null character
is reached or until the number of characters indicated by the precision specification is exhausted.

e The argument is taken to be a float or double and converted to decimal notation of the form
[−] m.nnnnnnE [−] xx where the length of the string ofn’s is specified by the precision. The default pre-
cision is 6 and the maximum is 22.

f The argument is taken to be a float or double and converted to decimal notation of the form
[−]mmm.nnnnnwhere the length of the string ofn’s is specified by the precision.The default precision
is 6 and the maximum is 22. Note that the precision does not determine the number of significant digits
printed inf format.

If no recognizable conversion character appears after the ‘%’, that character is printed; thus ‘%’ may be printed by
use of the string ‘‘%%’’. As an example ofprintf, the following program fragment int i, j; float x; char*s; i = 35;
j=2; x= 1.732; s = ‘‘ritchie’’; printf (‘‘%d %f %s\n’’, i, x, s); printf (‘‘%o, %4d or %−4d%5.5s\n’’, i, j, j, s); would
print 35 1.732000 ritchie 043,2 or 2 ritch If fd is not specified, output is to unit cout. It is possible to direct out-
put to a string instead of to a file.This is indicated by−1 as the first argument. Thesecond argument should be a
pointer to the string.Printf will put a terminating ‘\0’ onto the string.

SCANF ([fd,] control-string, arg1, arg2,)

SCANF ([−1, input-string,] control-string, arg1, arg2,)

Scanfreads characters, interprets them according to a format, and stores the results in its arguments. Itexpects as ar-
guments:
1. An optional file-descriptor or input-string, indicating the source of the input characters; if omitted, file cin
is used;
2. A control string, described below;
3. A set of arguments,each of which must be a pointer, indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of input se-
quences. Thecontrol string may contain:

1. Blanks,tabs or newlines, which are ignored.
2. Ordinarycharacters (not %) which are expected to match the next non-space character of the input

stream (where space characters are defined as blank, tab or newline).
3. Conversion specifications, consisting of the character %, an optional assignment suppressing char-

acter* , an optional numerical maximum field width, and a conversion character.

A conversion specification is used to direct the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by the* character. An input
field is defined as a string of non-space characters; it extends either to the next space character or until the field
width, if specified, is exhausted. Theconversion character indicates the interpretation of the input field; the corre-
sponding pointer argument must usually be of a restricted type.Pointers, rather than variable names, are required by
the ‘‘call-by-value’’ semantics of the C language. The following conversion characters are legal:

% indicates that a single % character is expected in the input stream at this point; no assignment is
done.

d indicates that a decimal integer is expected in the input stream; the corresponding argument should
be an integer pointer.

o indicates that an octal integer is expected in the input stream; the corresponding argument should
be a integer pointer.

x indicates that a hexadecimal integer is expected in the input stream; the corresponding argument
should be an integer pointer.

s indicates that a character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and a terminating ‘\0’, which
will be added. The input field is terminated by a space character or a newline.

c indicates that a single character is expected; the corresponding argument should be a character
pointer; the next input character is placed at the indicated spot.The normal skip over space characters
is suppressed in this case; to read the next non-space character, try %1s.

e or f indicates that a floating point number is expected in the input stream; the next field is converted ac-
cordingly and stored through the corresponding argument, which should be a pointer to a float.The in-
put format for floats is a string of numbers possibly containing a decimal point, followed by an optional
exponent field containing an E or e followed by a possibly signed integer.

[indicates a string not to be delimited by space characters. The left bracket is followed by a set of
characters and a right bracket; the characters between the brackets define a set of characters making up
the string. If the first character is not circumflex (ˆ), the input field is all characters until the first char-
acter not in the set between the brackets; if the first character after the left bracket is ˆ, the input field is
all characters until the first character which is in the remaining set of characters between the brackets.
The corresponding argument must point to a character array.

The conversion characters d, o and x may be preceded by l to indicate that a pointer to long rather than int is expect-
ed. Similarly, the conversion characters e or f may be preceded by l to indicate that a pointer to double rather than
float is in the argument list. The character h will function similarly in the future to indicate short data items.For ex-
ample, the call

int i; float x; char name[50];
scanf (‘‘%d%f%s’’, &i, &x, name);

with the input line
25 54.32E−1 thompson

will assign toi the value 25,x the value 5.432, andnamewill contain ‘‘ thompson\0’’.Or,
int i; float x; char name[50];
scanf (‘‘%2d%f%*d%[1234567890]’’, &i, &x, name);

with input
56789 0123 56a72

will assign 56 toi, 789.0 tox, skip ‘‘0123’’, and place the string ‘‘56\0’’ i n name. The next call tocgetcwill return
‘a’. Scanfreturns as its value the number of successfully matched and assigned input items.This can be used to de-
cide how many input items were found. On end of file,−1 is returned; note that this is different from 0, which
means that the next input character does not match what you called for in the control string.Scanf,if given a first ar-
gument of−1, will scan a string in memory given as the second argument. For example, if you want to read up to
four numbers from an input line and find out how many there were, you could try

int a[4], amax;
char line[100];
amax = scanf (−1, gets(line), ‘‘%d%d%d%d’’, &a[0], &a[1], &a[2], &a[3]);

6. BINARY STREAM ROUTINES These routines write binary data, not translated to printable characters.They are
normally efficient but do not produce files that can be printed or easily interpreted. No special information is added
to the records and thus they can be handled by other programming systemsif you make the departure from portabili-
ty required to tell the other system how big a C item (integer, float, structure, etc.) really is in machine units.

COPEN (name, direction, ‘‘i’’)

Whencopenis called with a third argument as above, a binary stream filedescriptor is returned.Such a file descrip-
tor is required for the remaining subroutines in this section, and may not be used with the routines in the preceding
two sections. Thefirst two arguments operate exactly as described in section 3; further details are given in section 7.
An ordinary file descriptor may be used for binary I-O, but binary and character I-O may not be mixed unless cflush
is called at each switch to binary I-O. The third argument to copen is ignored.

CWRITE (ptr, sizeof(*ptr), nitems, fd)

Cwrite writesnitemsof data beginning atptr on file fd. Cwritewrites blocks of binary information, not translated to
printable form, on a file. It is intended for machine-oriented bulk storage of intermediate data.Any kind of data
may be written with this command, but only the correspondingcreadshould be expected to make any sense of it on
return. Thefirst argument is a pointer to the beginning of a vector of any kind of data. The second argument tells
cwrite how big the items are. The third argument specifies the number of the items to be written; the fourth indicates
where.

CREAD (ptr, sizeof(*ptr), nitems, fd)

Creadreads up tonitemsof data from filefd into a buffer beginning atptr. Cread returns the number of items read.

The returned number of items will be equal to the number requested by nitems except for reading certain devices
(e.g. the teletype or magnetic tape) or reading the final bytes of a disk file.Again, the second argument indicates the
size of the data items being read.

CCLOSE (fd)

The same description applies as for character-stream files. 7. OTHER PORTABLE ROUTINES

REW (fd)

Rewinds unit fd. Buffers are emptied properly and the file is left open.

SYSTEM (string)

The given string is executed as if it were typed at the terminal.

NARGS ()

A subroutine can call this function to try to find out how many arguments it was called with.Normally, nargs() re-
turns the number of arguments plus 3 for every float or double argument and plus one for every long argument. If
the newUNIX feature of separated instruction and data space areas is used, nargs() doesn’t work at all.

CALLOC (n, sizeof(object))

Calloc returns a pointer to new storage, allocated in space obtained from the operating system. The space obtained
is well enough aligned for any use, i.e. for a double-precision number. Enough space to store n objects of the size
indicated by the second argument is provided. Thesizeof is executed at compile time; it is not in the library. A re-
turned value of−1 indicates failure to obtain space.

CFREE (ptr, n, sizeof(*ptr))

Cfree returns to the operating system memory starting at ptr and extending for n units of the size given by the third
argument. Thespace should have been obtained throughcalloc. On UNIX you can only return the exact amount of
space obtained by calloc; the second and third arguments are ignored.

FTOA (floating-number, char-string, precision, format)

Ftoa (floating toASCII conversion) converts floating point numbers to character strings.The formatargument should
be either ‘f’ or ‘ e’; ‘e’ is default. Seethe explanation ofprintf in section 5 for a description of the result.

AT OF (char-string)

Returns a floating value equal to the value of theASCII character string argument, interpreted as a decimal floating
point number.

TMPNAM (str)

This routine places in the character array expected as its argument a string which is legal to use as a file name and
which is guaranteed to be unique among all jobs executing on the computer at the same time. It is thus appropriate
for use as a temporary file name, although the user may wish to move it into an appropriate directory. The value of
the function is the address of the string.

ABORT (code)

Causes your program to terminate abnormally, which typically results in a dump by the operating system.

INTSS ()

This routine tells you whether you are running in foreground or background.The definition of ‘‘foreground’’ is that
the standard input is the terminal.

WDLENG ()

This returns 16 onUNIX . C users should be aware that the preprocessor normally provides a defined symbol suitable
for distinguishing the local system; thus on UNIX the symbol unix is defined before starting to compile your pro-
gram.

