The Portable C Library (ooNix) * M. E. Lesk 1. INTRODUCTION The C language [1]wexists on three operat-

ing systems.* This document is an ablwated form of “The Portable C Library”, by M. E. Lesk, describing only

the UNIX section of the libraryA set of library routines common gopP 11 UNIX, Honeywell 6000GCos and I1BM

3700s has been provided to impr@ rogram portability This memorandum describes the UNIX implementation

of the portable routinesThe programs defined here were chosen toviollee standard routinevalable onuNix,

with alterations to impnee transferability to other computer systems. It is expected that future C implementations
will try to support the basic library outlined in this documehfprovides character stream input and output on mul-

tiple files; simple accessing of files by name; and some elementary formatting and translating routines. The remain-
der of this memorandum lists the portable and non-portable library routines and explains some of the programming
aids aailable. Thel/O routines in the C libraryall into several classes. Files are addressed through intermediate
numbers called file-descriptors which are described in secti@a2ral defwult file-descriptors are provided by the
system; other aspects of the system environment are explained in sediasicharacter-stream input and output
involves the reading or writing of files considered as streams of characters. The C library iradilities for this,
discussed in section Higher-level character stream operations permit translation of internal binary representations
of numbers to and from character representations, and formatting or unpacking of characiEnedstaperations

are performed with the subprograms in section 5. Binary input and output routines permit data transmission without
the cost of translation to or from readabeil character representations. Such data transmission should only be di-
rected to files or tapes, and not to printers or terminals. As is usual with such routines, the only simple guarantee
that can be made to the programmer seeking portability is that data written by a particular sequence of binary writes,
if read by the exactly matching sequence of binary reads, will restore theugreontents of memaryOther reads

or writes hae g/stem-dependent fetts. Seesection 6 for a discussion of binary input and output. Section 7 de-
scribes some further routines in the portable librafyese include a storage allocator and some other control and
conversion functions. 2. FILE DESCRIFJORS Except for the standard input and output files, all files must-be e
plicitly opened before anl/O is performed on them. When files are opened for writing, &ree created if not al-

ready presentThey must be closed when finished, although the normst ceutine will take care of that. When

opened a disc file or device is associated with a file descrgtanteger between 0 and 9. This file descriptor is

used for further I/O to the file. Initially you arevgn three file descriptors by the system: 0, 1, and 2. File O is the
standard input; it is normally the teletype in time-sharing or input data cards in Bd&ch. is the standard output;

it is normally the teletype in time-sharing or the line printer in batch. File 2 is the error file; it is an output-file, nor
mally the same as file 1, except that when file 1viergid via a command line ">’ operatdile 2 remains attached

to the original destination, usually the terminal. It is used for error message olitase populauNix cornven-

tions are considered part of the C library specification. By closing 0 or 1, the default input or output may be re-di-
rected; this can also be done on the command lindilgyfor output or<file for input. Associated with the portable

library are tvo external integers, named cin and colitese are respeedly the numbers of the standard input unit

and standard output unit. Initially 0 and 1 are used, but you may redefine theytiateanThesecells are used by

the routines getchgputchar gets, and puts to select their I-O unit numb&THE C ENVIRONMENT The C lan-

guage is almost exactly the same on all machines, except for essential machine differencessuclersgthivand

number of characters perowd. OnuNix AsScll character code is used. Characters range #b28 to +127 in nu-

meric value, there is sign extension when characters are assignedy#osingad right shifts are arithmetithe

“first” character in a wrd is stored in the right halfard. Moreserious problems of compatibility are caused by

the loaders on the dérent operating systemsINIX permits external names to be in upper and lower case, up to
seven characters longThere may be multiple external definitions (uninitialized) of the same name. The C alphabet
for identifier names includes the upper and lower case letters, the digits, and the underline. It is not possible for C
programs to communicate witftORTRAN programs. 4BASIC CHARACTER STREAM ROUTINES These rou-

tines transfer streams of characters in and out of C progratespretation of the characters is left to the user

cilities for interpreting numerical strings are presented in section 5; and routines to transfer binary data to and from
files or devices are discussed in sectionrGthe following routine descriptions, the optionajamnentfd represents

a file-descriptor; if not present, it is taken to be O for input and 1 for output. When your program starts, remember
that these are associated with the “standangiut and output files.

COPEN (filenametype)

Copeninitiates actiity on a file; if necessary it will create the file too. Up to 10 files may be open at one time.
When called as described hecepenreturns a filedescriptor for a character stream falues less than zero re-
turned by copen indicate an error trying to open the file. Other caltppnare described in sections 6 and 7.

Arguments :

Filename:a dring representing a file name, according to the local operating systeentions. All accept a string
of letters and digits as agd file name, although leading digits are not recommendextos

Type: a character ‘r’, ‘w’, or ‘a’ meaning read, write, or append. Note that the type is a single chavaeteras the
file name must be a string.

CGETC (fd)

Cgetcreturns the next character from the input unit associatedfavitbn end of file cgetcreturns \0’. To dgnal
end of file from the teletype, type the special symbol appropriateixo EOT (control-D)

CPUTC (&1, fd)

Cputcwrites a character onto thevgn output unit. Cputcreturns as its value the character written. Output for disk
files is buffered in 512 character units, irrespectf newlines; teletype output goes character by character

CCLOSE (fd)

Activity on file fd is terminated and groutput luffers are emptiedYou usually dont haveto call cclose; ceit will
do it for you on all open filesHowever, to write some data on a file and then read it back in, the correct sequence is:

fd = copen (“file”, ‘w’); write on fd ... cclose (fd); fd = copen(“file”, 'r’); read from fd ...

CFLUSH (fn)

To get tuffer flushing, but retain the ability to write more on the file, you may call this routinemally, output in-
tended for the teletype is not buffered and this call is not needed.

CEXIT ([errcode])

Cexitcloses all files and then terminate®aution. If a non-zero argument isgn, this is assumed to be an error
indication or other returned value to be signalled to the operating sySteqat.must be called»licitly; a return
from the main program is not adequate.

CEOF (fd)

Ceofreturns nonzero when end of file has been reached on inpfd.unit

GETCHAR ()

Getcharis a special case obetc;it reads one character from the standard input étdar () is defined asgetc
(cin); it should not hee an argument.

PUTCHAR (ch)

Putchar (ch)is the same agputc (ch, cout)it writes one character on the standard output.

GETS (s)

Getsreads werything up to the next newline into the string pointed t@bif the last character read from this input
unit was newline, thegets reads the n4 line, which onccosandiem corresponds exactly to a logical recoithe
terminating newline is replaced by \0’. The valuggefsis s, or O if end of file.

PUTS (s)

Copies the string onto the standard output unit. The terminating \O’ is replaced by a newline charBtwtevalue
of putsis s.

UNGETC (1, fd)

Ungetcpushes back its charactegament to the unifd, which must be open for inputAfter ungetc (‘a’, fd);

ungetc (‘b’, fd); the next tvo characters to be read frofd will be ‘b’ and then ‘a’. Up to 100 characters may be
pushed back on each fil&his subroutine permits a program to read past the end of its input, and then restore it for
the next routine to readt is impossible to change an external file witlgetc;its purpose is only for internal com-
munications, most particularlycanf,which is described in section 5. Note tilsaBnfactually requires only one
character of‘tinget” capability; thus it is possible that future implementors may change the specification of the
ungetcroutine. 5.HIGH-LEVEL CHARACTER STREAM ROUTINES These tw routines,printf for output and
scanffor input, permit simple translation to and from character representations of numerical quartigeslso

allow generation or interpretation of formatted lines.

PRINTF ([fd,] control-stringargl, arg2, ...)
PRINTF ([-1, output-string] control-string argl, arg2, ...)

Printf corverts, formats, and prints its arguments under control of the control string. The control string corains tw
types of objects: plain characters, which are simply copied to the output stream, \@nsi@orspecifications, each
of which causes carrsion and printing of the next succegsagument toprintf.

Each cowersion specification is introduced by the character ‘%dlowing the ‘%’, there may be:
— an gotional minus sign-’ which specifies left adjustment of the gared argument in the indicated
field;

— an tional digit string specifying a minimum field width; if the gerted argument has fewer char
acters than the field width it will be padded on the left (or right, if the left adjustment indicator has been

Nt FA o mmAala m A BIAIA anAdlk s HlhhAa mAadAI A AlAaracstar e ilanmly mAarmmallyhr ArlA A~ F HlhAa FIALA vanAdR

was Pecified with a leading zero (note that this does not imply an octal field width);
— an gotional period ‘.which serves to separate the field width from the next digit string;

— an qotional digit string (the precision) which specifies the maximum number of characters to be
printed from a string, or the number of digits to be printed to the right of the decimal point of a floating
or double number.

— an optional length modifiel' which indicates that the corresponding data item is a long rather than
an int.

— a dharacter which indicates the type of zension to be applied.

The comwersion characters and their meanings are:

The argument is corrted to decimal notation.
The argument is comrted to octal notation.
The argument is corrted to hexadecimal notation.

The argument is certed to unsigned decimal notation. This is only implemented (or useful) on
UNIX.

The argument is taken to be a single character.

The argument is tak to be a string and characters from the string are printed until a null character
is reached or until the number of characters indicated by the precision specification is exhausted.

e The argument is taken to be a float or double andecenl to decimal notation of the form
[-]m.nnnnnnE {] xx where the length of the string 06 is Pecified by the precision. The default pre-
cision is 6 and the maximum is 22.

f The argument is taken to be a float or double andec®u to decimal notation of the form
[-Immm.nnnnrwhere the length of the string b6 is ecified by the precisionThe default precision
is 6 and the maximum is 22. Note that the precision does not determine the number of significant digits
printed inf format.

If no recognizable camrsion character appears after the ‘%’, that character is printed; thus ‘%’ may be printed by
use of the string%%"”. As an example oprintf, the following program fragment int i, j; float x; ches; i = 35;

j=2; x=1.732; s ='titchie”; printf (“%d %f %s\n”, i, x, s); printf (“%0, %4d or %4d%5.5s\n; i, |, j, s); would

print 35 1.732000 ritchie 043,2 or 2 ritch If fd is not specified, output is to unit cout. It is possible to direct out-
put to a string instead of to a fil&his is indicated by-1 as he first agument. Thesecond argument should be a
pointer to the stringPrintf will put a terminating ‘\O’ onto the string.

Cc X O Qo

SCANF ([fd,] control-stringargl, arg2,)
SCANF (F1, input-string] control-string argl, arg2,)

Scanfreads characters, interprets them according to a format, and stores the resultgumgstar Iexpects as ar
guments:

1. An optional file-descriptor or input-string, indicating the source of the input characters; if omitted, file cin
is used;

2. A control string, described below;

3. A set of agumentsgad of which must be a pointeindicating where the cerrted input should be stored.

The control string usually contains eersion specifications, which are used to direct interpretation of input se-
guences. Theontrol string may contain;

1. Blankstabs or newlines, which are ignored.

2. Ordinarycharacters (not %) which argpected to match the next non-space character of the input
stream (where space characters are defined as blank, tab or newline).

3. Corversion specifications, consisting of the character %, an optional assignment suppressing char

acterx, an gtional numerical maximum field width, and a eension character.

A corwversion specification is used to direct the wgion of the net input field; the result is placed in thariable
pointed to by the corresponding argument, unless assignment suppressiodieated by the character An input
field is defined as a string of non-space characters; it extends either to the next space character or until the field
width, if specified, is xhausted. Theorversion character indicates the interpretation of the input field; the corre-
sponding pointer argument must usually be of a restricted §pimters, rather than variable names, are required by
the “call-by-value’ semantics of the C language. The followingwasion characters aregd:
% indicates that a single % character is expected in the input stream at this point; no assignment is
done.
d indicates that a decimal integer igpected in the input stream; the corresponding argument should
be an integer pointer.
o] indicates that an octal integer is expected in the input stream; the correspogdimgrdrshould
be a integer pointer.
X indicates that a lkadecimal integer is expected in the input stream; the correspondingeart

s indicates that a character string is expected; the correspondjnment should be a character
pointer pointing to an array of characterg&enough to accept the string and a terminating ‘\0’, which
will be added. The input field is terminated by a space character or a newline.

c indicates that a single character is expected; the corresponding argument should be a character
pointer; the next input character is placed at the indicated 3pet.normal skip wer space characters
is suppressed in this case; to read the next non-space chamnaétdrs.

e or f indicates that a floating point number igected in the input stream; the next field isveoied ac-
cordingly and stored through the corresponding argument, which should be a pointer toh#aat.
put format for floats is a string of numbers possibly containing a decimal poinyédlloy an optional
exponent field containing an E or e followed by a possibly signed integer.

[indicates a string not to be delimited by space characters. The left bracketwgdollp a set of
characters and a right bratkthe characters between the brackets define a set of characters making up
the string. If the first character is not circumf(€), the input field is all characters until the first char
acter not in the set between the brackets; if the first character after the left bracket is ~, the input field is
all characters until the first character which is in the remaining set of characters between #tis. brack
The corresponding argument must point to a character array.

The cowersion characters d, o and x may be preceded by | to indicate that a pointer to long rather thapeat-is e
ed. Similarly the cowersion characters e or f may be preceded by | to indicate that a pointer to double rather than
float is in the argument list. The character h will function similarly in the future to indicate short datakteres.
ample, the call
int i; float x; char name[50];
scanf (“%d%f%s”, &i, &x, name);
with the input line
25 54.32E1 thompson
will assign toi the value 25x the value 5.432, anthmewill contain“ thompson\0”. Or,
int i; float x; char name[50];
scanf (“%2d%f% d%[1234567890]", &i, &%, name);
with input
56789 0123 56a72
will assign 56 td, 789.0 tox, skip “0123", and place the string56\0” in name. The next call tacgetcwill return
‘a’. Scanfreturns as its value the number of successfully matched and assigned inpuf hesresan be used to de-
cide hav mary input items were found. On end of filel is returned; note that this is tifent from 0, which
means that the next input character does not match what you called for in the controBsinfgf given a first ar
gument of-1, will scan a string in memory\gn as he second gument. Br example, if you want to read up to
four numbers from an input line and find outvmary there were, you could try
int a[4], amax;
char line[100];
amax = scanf<{1, gets(line), “%d%d%d%d", &a[0], &a[1], &a[2], &a[3]);
6. BINARY STREAM ROUTINES These routines write binary data, not translated to printable chardttersre
normally efficient but do not produce files that can be printed or easily interpreted. No special information is added
to the records and thus thean be handled by other programming systérgeu male the departure from portabili-
ty required to tell the other systemvwhbig a C item (integeffloat, structure, etc.) really is in machine units.

COPEN (namgdirection, “i")

Whencopenis called with a third argument as apa bnary stream filedescriptor is returne8uch a file descrip-

tor is required for the remaining subroutines in this section, and may not be used with the routines in the preceding
two sections. Thdirst two arguments operate exactly as described in section 3; further detailvarénggection 7.

An ordinary file descriptor may be used for binary I-O, but binary and character I1-O may not be mixed unless cflush
is called at each switch to binary I-O. The third argument to copen is ignored.

CWRITE (ptrdzeofé ptr), nitems, fd)

Cwrite writes nitemsof data beginning gitr on filefd. Cwritewrites blocks of binary information, not translated to
printable form, on a file. It is intended for machine-oriented bulk storage of intermediateAdsitkind of data

may be written with this command, but only the correspondiegdshould be expected to nakny snse of it on
return. Thefirst argument is a pointer to the beginning ofeater of ay kind of data. The second argument tells
cwrite how big the items are. The thirdgument specifies the number of the items to be written; the fourth indicates
where.

CREAD (ptrgzeoftptr), nitems, fd)

Creadreads up tmitemsof data from filefd into a buffer beginning aitr. Cread returns the number of items read.

The returned number of items will be equal to the number requested by nitems except for reading cegain de
(e.g. the teletype or magnetic tape) or reading the final bytes of a diskdéén, the second argument indicates the
size of the data items being read.

CCLOSE (fd)

The same description applies as for character-stream files. 7. OTHERABOR ROUTINES

REW (fd)

Rewinds unit fd. Buffers are emptied properly and the file is left open.

SYSTEM (string)

The given dring is executed as if it were typed at the terminal.

NARGS ()

A subroutine can call this function to try to find outthmary arguments it was called withNormally, nargs() re-
turns the number of arguments plus 3 feerg float or double @ument and plus one fovery long agument. If
the newuNix feature of separated instruction and data space areas is used, nargs{jwiokest’all.

CALLOC (n, sizeof(object))

Calloc returns a pointer to westorage, allocated in space obtained from the operating system. The space obtained
is well enough aligned for gruse, i.e. for a double-precision numb&nough space to store n objects of the size
indicated by the second argument isvidled. Thesizeof is &ecuted at compile time; it is not in the librarn re-

turned value of1 indicates failure to obtain space.

CFREE (ptrn, dzeof(*ptr))

Cfree returns to the operating system memory starting at ptrerndang for n units of the sizewgn by the third
amgument. Thespace should ve keen obtained througtalloc. On UNIX you can only return thexact amount of
space obtained by calloc; the second and third arguments are ignored.

FTOA (floating-numberchar-string, precision, format)

Ftoa (floating toAscil corversion) cowerts floating point numbers to character stringihe formatargument should

be either ‘for ‘e’; ‘e’ is default. Seahe explanation gbrintf in section 5 for a description of the result.

ATOF (char-string)

Returns a floating value equal to tredue of theascil character string argument, interpreted as a decimal floating
point number.

TMPNAM (str)

This routine places in the character array expected agjiimant a string which isda to use as a file name and
which is guaranteed to be unique among all jotesiging on the computer at the same time. It is thus appropriate
for use as a temporary file name, although the user may wishviinioto an appropriate directoryfhe value of

the function is the address of the string.

ABORT (code)

Causes your program to terminate abnormailhich typically results in a dump by the operating system.

INTSS ()

This routine tells you whether you are running in foreground or backgrotmeldefinition of ‘foreground’ is that
the standard input is the terminal.

WDLENG ()

This returns 16 ooNix. C users should beasre that the preprocessor normally provides a defined symbol suitable
for distinguishing the local system; thus on UNIX the symbol unix is defined before starting to compile your pro-
gram.

