There was nothing unique about the size or the object code of Dennis's C
compiler. In the 1960s, Digitek had a thriving business of making Fortran
compilers for all manner of machines. To optimize space usage, the
compilers' internal memory model comprised variable-size movable tables,
called "rolls". To exploit this non-native architecture, the compilers
themselves were interpreted, although they generated native code. Bob
McClure tells me he used one on an SDS910 that had 8K 16-bit words.
Dennis was one-up on Digitek in having a self-maintaining compiler. Thus,
when he implemented an optimization, the source would grow, but the
compiler binary might even shrink thanks to self-application.
Doug
nl(1) uses the notable character sequences “\:\:\:”, “\:\:”, and “\:” to delimit header, body, and trailer sections within its input.
I wondered if anyone was able to shed light on the reason those were adopted as the defaults?
I would have expected perhaps something compatible with *roff (like, .\” something).
FreeBSD claims nl first appeared in System III (although it previously claimed SVR2), but I haven’t dug into the implementation any further.
Thanks in advance,
d
While the idea of small tools that do one job well is the core tenant of
what I think of as the UNIX philosophy, this goes a bit beyond UNIX, so I
have moved this discussion to COFF and BCCing TUHS for now.
The key is that not all "bloat" is the same (really)—or maybe one person's
bloat is another person's preference. That said, NIH leads to pure bloat
with little to recommend it, while multiple offerings are a choice. Maybe
the difference between the two may be one person's view over another.
On Fri, May 10, 2024 at 6:08 AM Rob Pike <robpike(a)gmail.com> wrote:
> Didn't recognize the command, looked it up. Sigh.
>
Like Rob -- this was a new one for me, too.
I looked, and it is on the SYS3 tape; see:
https://www.tuhs.org/cgi-bin/utree.pl?file=SysIII/usr/src/man/man1/nl.1
> pr -tn <file>
>
> seems sufficient for me, but then that raises the question of your
> question.
>
Agreed, that has been burned into the ROMs in my fingers since the
mid-1970s 😀
BTW: SYS3 has pr(1) with both switches too (more in a minute)
> I've been developing a theory about how the existence of something leads
> to things being added to it that you didn't need at all and only thought of
> when the original thing was created.
>
That is a good point, and I generally agree with you.
> Bloat by example, if you will. I suspect it will not be a popular theory,
> however accurately it may describe the technological world.
>
Of course, sometimes the new features >>are<< easier (more natural *for
some people*). And herein lies the core problem. The bloat is often
repetitive, and I suggest that it is often implemented in the wrong place -
and usually for the wrong reasons.
Bloat comes about because somebody thinks they need some feature and
probably doesn't understand that it is already there or how they can use
it. But they do know about it, their tool must be set up to exploit it - so
they do not need to reinvent it. GUI-based tools are notorious for this
failure. Everyone seems to have a built-in (unique) editor, or a private
way to set up configuration options et al. But ... that walled garden is
comfortable for many users and >>can be<< useful sometimes.
Long ago, UNIX programmers learned that looking for $EDITOR in the
environment was way better than creating one. Configuration was as ASCII
text, stored in /etc for system-wide and dot files in the home for users.
But it also means the >>output<< of each tool needs to be usable by each
other [*i.e.*, docx or xlx files are a no-no).
For example, for many things on my Mac, I do use the GUI-based tools --
there is no doubt they are better integrated with the core Mac system >>for
some tasks.<< But only if I obey a set of rules Apple decrees. For
instance, this email read is easier much of the time than MH (or the HM
front end, for that matter), which I used for probably 25-30 years. But on
my Mac, I always have 4 or 5 iterm2(1) open running zsh(1) these days. And,
much of my typing (and everything I do as a programmer) is done in the shell
(including a simple text editor, not an 'IDE'). People who love IDEs swear
by them -- I'm just not impressed - there is nothing they do for me that
makes it easier, and I have learned yet another scheme.
That said, sadly, Apple is forcing me to learn yet another debugger since
none of the traditional UNIX-based ones still work on the M1-based systems.
But at least LLDB is in the same key as sdb/dbx/gdb *et al*., so it is a
PITA but not a huge thing as, in the end, LLDB is still based on the UNIX
idea of a single well-designed and specific to the task tool, to do each
job and can work with each other.
FWIW: I was recently a tad gob-smacked by the core idea of UNIX and its
tools, which I have taken for a fact since the 1970s.
It turns out that I've been helping with the PiDP-10 users (all of the
PiDPs are cool, BTW). Before I saw UNIX, I was paid to program a PDP-10. In
fact, my first UNIX job was helping move programs from the 10 to the UNIX.
Thus ... I had been thinking that doing a little PDP-10 hacking shouldn't
be too hard to dust off some of that old knowledge. While some of it has,
of course, come back. But daily, I am discovering small things that are so
natural with a few simple tools can be hard on those systems.
I am realizing (rediscovering) that the "build it into my tool" was the
norm in those days. So instead of a pr(1) command, there was a tool that
created output to the lineprinter. You give it a file, and it is its job to
figure out what to do with it, so it has its set of features (switches) -
so "bloat" is that each tool (like many current GUI tools) has private ways
of doing things. If the maker of tool X decided to support some idea, they
would do it like tool Y. The problem, of course, was that tools X and Y
had to 'know about' each type of file (in IBM terms, use its "access
method"). Yes, the engineers at DEC, in their wisdom, tried to
"standardize" those access methods/switches/features >>if you implemented
them<< -- but they are not all there.
This leads me back to the question Rob raises. Years ago, I got into an
argument with Dave Cutler RE: UNIX *vs.* VMS. Dave's #1 complaint about
UNIX in those days was that it was not "standardized." Every program was
different, and more to Dave's point, there was no attempt to make switches
or errors the same [getopt(3) had been introduced but was not being used by
most applications). He hated that tar/tp used "keys" and tools like cpio
used switches. Dave hated that I/O was so simple - in his world all user
programs should use his RMS access method of course [1]. VMS, TOPS, *etc.*,
tried to maintain a system-wide error scheme, and users could look things
like errors up in a system DB by error number, *etc*. Simply put, VMS is
very "top-down."
My point with Dave was that by being "bottom-up," the best ideas in UNIX
were able to rise. And yes, it did mean some rough edges and repeated
implementations of the same idea. But UNIX offered a choice, and while Rob
and I like and find: pr -tn perfectly acceptable thank you, clearly someone
else desired the features that nl provides. The folks that put together
System 3 offer both solutions and let the user choose.
This, of course, comes as bloat, but maybe that is a type of bloat so bad?
My own thinking is this - get things down to the basics and simplest
privatives and then build back up. It's okay to offer choices, as long as
the foundation is simple and clean. To me, bloat becomes an issue when you
do the same thing over and over again, particularly because you can not
utilize what is there already, the worst example is NIH - which happens way
more than it should.
I think the kind of bloat that GUI tools and TOPS et al. created forces
recreation, not reuse. But offering choice and the expense of multiple
tools that do the same things strikes me as reasonable/probably a good
thing.
1.] BTW: One of my favorite DEC stories WRT to VMS engineering has to do
with the RMS I/O system. Supporting C using VMS was a bit of PITA.
Eventually, the VMS engineers added Stream I/O - which simplified the C
runtime, but it was also made available for all technical languages.
Fairly soon after it was released, the DEC Marketing folks discovered
almost all new programs, regardless of language, had started to use Stream
I/O and many older programs were being rewritten by customers to use it. In
fact, inside of DEC itself, the languages group eventually rewrote things
like the FTN runtime to use streams, making it much smaller/easier to
maintain. My line in the old days: "It's not so bad that ever I/O has
offer 1000 options, it's that Dave to check each one for every I/O. It's a
classic example of how you can easily build RMS I/O out of stream-based
I/O, but the other way around is much harder. My point here is to *use
the right primitives*. RMS may have made it easier to build RDB, but it
impeded everything else.
> On Wed, 8 May 2024 14:12:15 -0400,Clem Cole <clemc(a)ccc.com <mailto:clemc@ccc.com>> wrote:
>
> FWIW: The DEC Mod-II and Mod-III
> were new implementations from DEC WRL or SRC (I forget). They targeted
> Alpha and I, maybe Vax. I'd have to ask someone like Larry Stewart or Jeff
> Mogul who might know/remember, but I thought that the font end to the DEC
> MOD2 compiler might have been partly based on Wirths but rewritten and by
> the time of the MOD3 FE was a new one originally written using the previous
> MOD2 compiler -- but I don't remember that detail.
Michael Powell at DEC WRL wrote a Modula 2 compiler that generated VAX code. Here’s an extract from announcement.d accompanying a 1992 release of the compiler from gatekeeper.dec.com <http://gatekeeper.dec.com/>:
The compiler was designed and built by Michael L. Powell, and originally
released in 1984. Joel McCormack sped the compiler up, fixed lots of bugs, and
swiped/wrote a User's Manual. Len Lattanzi ported the compiler to the MIPS.
Later, Paul Rovner and others at DEC SRC designed Modula-2+ (a language extension with exceptions, threads, garbage collection, and runtime type dispatch). The Modula-2+ compiler was originally based on Powell’s compiler. Modula-2+ ran on the VAX.
Here’s a DEC SRC research report on Modula-2+:
http://www.bitsavers.org/pdf/dec/tech_reports/SRC-RR-3.pdf
Modula-3 was designed at DEC SRC and Olivetti Labs. It had a portable implementation (using the GCC back end) and ran on a number of machines including Alpha.
Paul